Characterisation of functional domains in fission yeast Ams2 that are required for core histone gene transcription
نویسندگان
چکیده
Histone gene expression is regulated in a cell cycle-dependent manner, with a peak at S phase, which is crucial for cell division and genome integrity. However, the detailed mechanisms by which expression of histone genes are tightly regulated remain largely unknown. Fission yeast Ams2, a GATA-type zinc finger motif-containing factor, is required for activation of S phase-specific core histone gene transcription. Here we report the molecular characterisation of Ams2. We show that the zinc finger motif in Ams2 is necessary to bind the histone gene promoter region and to activate histone gene transcription. An N-terminal region of Ams2 acts as a self-interaction domain. Intriguingly, N-terminally truncated Ams2 binds to the histone gene promoters, but does not fully activate histone gene transcription. These observations imply that Ams2 self-interactions are required for efficient core histone gene transcription. Moreover, we show that Ams2 interacts with Teb1, which itself binds to the core histone gene promoters. We discuss the relationships between Ams2 domains and efficient transcription of the core histone genes in fission yeast.
منابع مشابه
Differential regulation of repeated histone genes during the fission yeast cell cycle
The histone genes are highly reiterated in a wide range of eukaryotic genomes. The fission yeast, Schizosaccharomyces pombe, has three pairs of histone H3-H4 genes: hht1+-hhf1+, hht2+-hhf2+ and hht3+-hhf3+. While the deduced amino acid sequences are identical, it remains unknown whether transcriptional regulation differs among the three pairs. Here, we report the transcriptional properties of e...
متن کاملMutation of histone H3 serine 86 disrupts GATA factor Ams2 expression and precise chromosome segregation in fission yeast
Eukaryotic genomes are packed into discrete units, referred to as nucleosomes, by organizing around scaffolding histone proteins. The interplay between these histones and the DNA can dynamically regulate the function of the chromosomal domain. Here, we interrogated the function of a pair of juxtaposing serine residues (S86 and S87) that reside within the histone fold of histone H3. We show that...
متن کاملBiphasic incorporation of centromeric histone CENP-A in fission yeast.
CENP-A is a centromere-specific histone H3 variant that is essential for kinetochore formation. Here, we report that the fission yeast Schizosaccharomyces pombe has at least two distinct CENP-A deposition phases across the cell cycle: S and G2. The S phase deposition requires Ams2 GATA factor, which promotes histone gene activation. In Delta ams2, CENP-A fails to retain during S, but it reaccum...
متن کاملSim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation
ission yeast centromeres are composed of two domains: the central core and the outer repeats. Although both regions are required for full centromere function, the central core has a distinct chromatin structure and is likely to underlie the kinetochore itself, as it is associated with centromere-specific proteins. Genes placed within either region are transcriptionally silenced, reflecting the ...
متن کاملSim4
Fission yeast centromeres are composed of two domains: the central core and the outer repeats. Although both regions are required for full centromere function, the central core has a distinct chromatin structure and is likely to underlie the kinetochore itself, as it is associated with centromere-specific proteins. Genes placed within either region are transcriptionally silenced, reflecting the...
متن کامل